
1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 1/19

Searching an Array for a Value

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 2/19

In [1]:

In [2]:

Using a Binary Search

Found 20 at index 3

Found BBB at index 3

#include <stdio.h>

#define ARRAY_SIZE 5

int main(void)
{
 int values[ARRAY_SIZE] = { 30, 10, 40, 20, 50 };

 for (int i = 0; i < ARRAY_SIZE; ++i)
 if (values[i] == 20)
 printf("Found 20 at index %d\n", i);
}

#include <stdio.h>
#include <string.h>

#define ARRAY_SIZE 5

int main(void)
{
 char *values[ARRAY_SIZE] = { "AAA", "CCC", "DDD", "BBB", "EEE" };

 for (int i = 0; i < ARRAY_SIZE; ++i)
 if (strcmp(values[i], "BBB") == 0)
 printf("Found BBB at index %d\n", i);
}

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 3/19

In [3]:

Result of search for 27 is index 27
Result of search for 75 is index 75
Result of search for 3 is index 3
Result of search for 500 is index -1

#include <stdio.h>

int binary_search(int array[], int value, int size)
 {
 int found = 0;
 int high = size, low = 0, mid;

 mid = (high + low) / 2;

 while ((! found) && (high >= low))
 {
 // printf("Low %d Mid %d High %d\n", low, mid, high);

 if (value == array[mid])
 found = 1;
 else if (value < array[mid])
 high = mid - 1;
 else
 low = mid + 1;
 mid = (high + low) / 2;
 }
 return((found) ? mid: -1);
 }

int main(void)
 {
 int values[100];

 for (int i = 0; i < 100; i++)
 values[i] = i;

 printf("Result of search for %d is index %d\n", 27, binary_search(values, 27, 1
 printf("Result of search for %d is index %d\n", 75, binary_search(values, 75,
 printf("Result of search for %d is index %d\n", 3, binary_search(values, 3, 10
 printf("Result of search for %d is index %d\n", 500, binary_search(values, 500
 }

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 4/19

Using the C Library lsearch Function
In [4]:

 17 found in linear search at offset 3

#include <stdio.h>
#include <search.h>

int compare(int *a, int *b)
{
 return (*a - *b); // 0 if equal
}

void main ()
{
 int values[5] = {44, 69, 3, 17, 23};

 size_t elements = 5;

 int value_to_find = 17;
 int *value_location;

 value_location = (int *) lfind (&value_to_find, values, &elements, sizeof(int)

 if (value_location)
 printf (" %d found in linear search at offset %ld\n", value_to_find, value_
 else
 printf ("%d not found in linear search\n", value_to_find);
}

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 5/19

Using the C Libary bsearch Function
In [5]:

Understanding the Bubble Sort

Found item = 78 at offset 2

#include <stdio.h>
#include <stdlib.h>

int compare(const void * a, const void * b)
{
 return (*(int*) a - *(int*) b); // 0 if same, negative if less, positive if g
}

int main (void)
{
 int values[] = { 51, 60, 78, 79, 93 };

 int *value_location;
 int value_to_find = 78;

 value_location = (int*) bsearch (&value_to_find, values, 5, sizeof(int), compa

 if (value_location != NULL)
 printf("Found item = %d at offset %ld\n", value_to_find, value_location - va
 else
 printf("Item = %d could not be found\n", value_to_find);
}

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 6/19

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 7/19

In [6]:

11 15 21 23 26 26 27 29 30 35 35 36 40 49 59 62 62 63 67 67 68 72 77 82 83 86 8
6 90 92 93

#include <stdio.h>
#include <stdlib.h>

void bubble_sort(int array[], int size)
 {
 int temp, i, j;

 for (i = 0; i < size; i++)
 for (j = 0; j < size; j++)
 if (array[i] < array[j])
 {
 temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }

int main(void)
 {
 int values[30], i;

 for (i = 0; i < 30; i++)
 values[i] = rand() % 100;

 bubble_sort(values, 30);

 for (i = 0; i < 30; i++)
 printf("%d ", values[i]);
 }

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 8/19

Understanding the Selection Sort

In [7]:

11 15 21 23 26 26 27 29 30 35 35 36 40 49 59 62 62 63 67 67 68 72 77 82 83 86 8
6 90 92 93

#include <stdio.h>
#include <stdlib.h>

void selection_sort(int array[], int size)
 {
 int temp, current, j;

 for (current = 0; current < size; current++)
 for (j = current + 1; j < size; j++)
 if (array[current] > array[j])
 {
 temp = array[current];
 array[current] = array[j];
 array[j] = temp;
 }
 }

int main(void)
 {
 int values[30], i;

 for (i = 0; i < 30; i++)
 values[i] = rand() % 100;

 selection_sort(values, 30);

 for (i = 0; i < 30; i++)
 printf("%d ", values[i]);
 }

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 9/19

Understanding the Shell Sort

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 10/19

In [8]:

2 11 11 15 15 19 21 21 22 23 24 26 26 27 29 29 29 30 35 35 36 37 40 42 49 56 58
59 62 62 63 67 67 67 68 69 70 72 73 77 82 83 84 86 86 90 92 93 93 98

#include <stdio.h>
#include <stdlib.h>

void shell_sort(int array[], int size)
 {
 int temp, gap, i, exchange_occurred;

 gap = size / 2;

 do
 {
 do
 {
 exchange_occurred = 0;

 for (i = 0; i < size - gap; i++)
 if (array[i] > array[i + gap])
 {
 temp = array[i];
 array[i] = array[i + gap];
 array[i + gap] = temp;
 exchange_occurred = 1;
 }
 } while (exchange_occurred);
 }
 while (gap = gap / 2);
 }

int main(void)
 {
 int values[50], i;

 for (i = 0; i < 50; i++)
 values[i] = rand() % 100;

 shell_sort(values, 50);

 for (i = 0; i < 50; i++)
 printf("%d ", values[i]);
 }

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 11/19

Understanding the Quick Sort

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 12/19

In [9]:

2 3 5 5 8 11 11 12 13 13 14 15 15 19 21 21 22 23 24 24 25 26 26 26 26 27 27 29
29 29 29 30 32 34 35 35 36 36 37 39 39 40 42 43 45 46 49 50 51 54 56 56 57 58 5
9 60 62 62 62 63 64 67 67 67 67 68 68 69 70 70 72 73 73 76 76 77 78 80 81 82 82
83 84 84 84 86 86 86 87 88 90 91 92 93 93 94 95 96 98 99

#include <stdio.h>
#include <stdlib.h>

void quick_sort(int array[], int first, int last)
 {
 int temp, low, high, list_separator;

 low = first;
 high = last;
 list_separator = array[(first + last) / 2];

 do
 {
 while (array[low] < list_separator)
 low++;

 while (array[high] > list_separator)
 high--;

 if (low <= high)
 {
 temp = array[low];
 array[low++] = array[high];
 array[high--] = temp;
 }
 }
 while (low <= high);

 if (first < high)
 quick_sort(array, first, high);
 if (low < last)
 quick_sort(array, low, last);
 }

void main(void)
 {
 int values[100], i;

 for (i = 0; i < 100; i++)
 values[i] = rand() % 100;

 quick_sort(values, 0, 99);

 for (i = 0; i < 100; i++)
 printf("%d ", values[i]);
 }

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 13/19

Sorting an Array of Character Strings
In [10]:

AAA BBB CCC DDD EEE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void bubble_sort(char *array[], int size)
 {
 char *temp;
 int i, j;

 for (i = 0; i < size; i++)
 for (j = 0; j < size; j++)
 if (strcmp(array[i], array[j]) < 0)
 {
 temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }

int main(void)
 {
 char *values[] = {"AAA", "CCC", "BBB", "EEE", "DDD"};
 int i;

 bubble_sort(values, 5);

 for (i = 0; i < 5; i++)
 printf("%s ", values[i]);
 }

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 14/19

Using the C Library qsort

Compare Function Returns

<0 The element pointed by a goes before the element pointed by b
0 The element pointed by a is equivalent to the element pointed by b
>0 The element pointed by a goes after the element pointed by b

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 15/19

In [11]:

5 12 33 80 99
1.20 2.20 3.10 4.40 5.50
AAA BBB CCC DDD EEE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int int_compare (const void *a, const void *b)
{
 return (*(int *)a - *(int *)b);
}

int float_compare (const void *a, const void *b)
{
 if (*(float *) a < *(float *) b)
 return(-1);
 else if (*(float *) a > *(float *) b)
 return(1);
 else
 return(0);
}

int string_compare (const void *a, const void *b)
{
 const char* string1 = *(const char**)a;
 const char* string2 = *(const char**)b;
 return strcmp(string1, string2);
}

#define ARRAY_SIZE 5

int main (void)
{
 int values[] = { 99, 33, 80, 12, 5 };
 float float_values[] = { 1.2, 3.1, 2.2, 5.5, 4.4 };
 char *strings[] = { "AAA", "DDD", "BBB", "EEE", "CCC" };

 qsort(values, ARRAY_SIZE, sizeof(int), int_compare);
 qsort(float_values, ARRAY_SIZE, sizeof(float), float_compare);
 qsort(strings, ARRAY_SIZE, sizeof(char *), string_compare);

 for(int i = 0; i < 5; i++)
 printf("%d ", values[i]);

 printf("\n");

 for(int i = 0; i < 5; i++)
 printf("%5.2f ", float_values[i]);

 printf("\n");

 for(int i = 0; i < 5; i++)
 printf("%s ", strings[i]);
}

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 16/19

Reversing the Sort Order

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 17/19

In [12]:

99 80 33 12 5
 5.50 4.40 3.10 2.20 1.20
EEE DDD CCC BBB AAA

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int int_compare (const void *a, const void *b)
{
 return (*(int *)b - *(int *)a);
}

int float_compare (const void *a, const void *b)
{
 if (*(float *) b < *(float *) a)
 return(-1);
 else if (*(float *) b > *(float *) a)
 return(1);
 else
 return(0);
}

int string_compare (const void *a, const void *b)
{
 const char* string1 = *(const char**)a;
 const char* string2 = *(const char**)b;
 return strcmp(string2, string1);
}

#define ARRAY_SIZE 5

int main (void)
{
 int values[] = { 99, 33, 80, 12, 5 };
 float float_values[] = { 1.2, 3.1, 2.2, 5.5, 4.4 };
 char *strings[] = { "AAA", "DDD", "BBB", "EEE", "CCC" };

 qsort(values, ARRAY_SIZE, sizeof(int), int_compare);
 qsort(float_values, ARRAY_SIZE, sizeof(float), float_compare);
 qsort(strings, ARRAY_SIZE, sizeof(char *), string_compare);

 for(int i = 0; i < 5; i++)
 printf("%d ", values[i]);

 printf("\n");

 for(int i = 0; i < 5; i++)
 printf("%5.2f ", float_values[i]);

 printf("\n");

 for(int i = 0; i < 5; i++)
 printf("%s ", strings[i]);
}

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 18/19

What You will Learn Next
Arrays let your programs store multiple values of the same type. A problem with using arrays is that
your programs must know in advance the number of elements the array must store. In the next
lesson, you will learn how to allocate memory dynamically as the program executes and how to use
that memory to create linked lists and binary trees.

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 19/19

