1/31/2021 C Programming-Searching and Sorting

Hands On C
500 Working Programs

Searching and Sorting

Searching an Array for a Value

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 119

1/31/2021 C Programming-Searching and Sorting
In [1]: #include <stdio.h>
#define ARRAY_SIZE 5
int main(void)
{
int values[ARRAY_SIZE] = { 30, 10, 40, 20, 50 };
for (int i = ©; i < ARRAY_SIZE; ++i)

if (values[i] == 20)
printf("Found 20 at index %d\n", i);

Found 20 at index 3

In [2]: #include <stdio.h>
#include <string.h>

#define ARRAY_SIZE 5

int main(void)

¢ char *values[ARRAY SIZE] = { "AAA", "CCC", "DDD", "BBB", "EEE" };
for (int i = ©; i < ARRAY_SIZE; ++i)

if (strcmp(values[i], "BBB") == @)
printf("Found BBB at index %d\n", 1i);

Found BBB at index 3

Using a Binary Search

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 2/19

1/31/2021 C Programming-Searching and Sorting
In [3]: #include <stdio.h>

int binary_search(int array[], int value, int size)

{
int found = ©;
int high = size, low = 0, mid;

mid = (high + low) / 2;

while ((! found) && (high >= low))

{
// printf("Low %d Mid %d High %d\n", lLow, mid, high);

if (value == array[mid])
found = 1;

else if (value < array[mid])
high = mid - 1;

else
low = mid + 1;
mid = (high + low) / 2;
}
return((found) ? mid: -1);

}

int main(void)

{
int values[100];

for (int i = 0; i < 100; i++)
values[i] = i;

printf("Result of search for %d is index %d\n", 27, binary_search(values, 27,

printf("Result of search for %d is index %d\n", 75, binary_search(values, 75,
printf("Result of search for %d is index %d\n", 3, binary_search(values, 3, 1
printf("Result of search for %d is index %d\n", 500, binary_search(values, 50

Result of search for 27 is index 27
Result of search for 75 is index 75
Result of search for 3 is index 3
Result of search for 500 is index -1

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 3/19

1/31/2021 C Programming-Searching and Sorting

Using the C Library Isearch Function

In [4]: #include <stdio.h>
#include <search.h>

int compare(int *a, int *b)

{
return (*a - *b); // 0 if equal
}
void main ()
{
int values[5] = {44, 69, 3, 17, 23};
size t elements = 5;
int value_to_find = 17;
int *value_location;
value_location = (int *) 1find (&value_to_find, values, &elements, sizeof(int)
if (value_location)
printf (" %d found in linear search at offset %1d\n", value_to find, value_
else
printf ("%d not found in linear search\n", value_to_find);
}

17 found in linear search at offset 3

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 4/19

1/31/2021 C Programming-Searching and Sorting

Using the C Libary bsearch Function

In [5]: #include <stdio.h>
#include <stdlib.h>

int compare(const void * a, const void * b)

{
}

return (*(int*) a - *(int*) b); // @ if same, negative 1if Lless, positive if

int main (void)
{
int values[] = { 51, 60, 78, 79, 93 };

int *value_location;
int value_to_find = 78;

value location = (int*) bsearch (&value_to find, values, 5, sizeof(int), compa
if (value_location != NULL)
printf("Found item = %d at offset %1d\n", value_to_find, value_location - v

else
printf("Item = %d could not be found\n", value_to_find);

Found item = 78 at offset 2

Understanding the Bubble Sort

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 5/19

1/31/2021 C Programming-Searching and Sorting

044-7 o[33 o[33 0[33
1[33] 144-7 1[44 124
2[55] - 2[55 2@7 2[22
3[22 3[22 322 3“537
4[11 4[11 4171 411
033'7 0133 0l 33
1[44 144-7 1[22
2|22 2|22 2447
3_% 3_% 3[11
4 4 4/55]
0/ 331 o[22]
1]22 1&7
2|11 211
3|44 344
4[55] 4[55
0[22; o[11
1117 1_%
233 S Final
3[44] " 344
4155 fr455

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 6/19

1/31/2021 C Programming-Searching and Sorting

In [6]: #include <stdio.h>
#include <stdlib.h>

void bubble_sort(int array[], int size)

{

int temp, i, j;

for (i = 0; 1 < size; i++)
for (j = 0; j < size; j++)
if (array[i] < array[j])

{
temp = array[i];
array[i] = array[jl;
array[j] = temp;

}

}

int main(void)
{

int values[30], i;

for (i = 0; i < 30; i++)
values[i] = rand() % 100;

bubble_sort(values, 30);
for (i = 0; 1 < 30; i++)

printf("%d ", values[i]);

11 15 21 23 26 26 27 29 30 35 35 36 40 49 59 62 62 63 67 67 68 72 77 82 83 86 8
6 90 92 93

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb

7/19

1/31/2021 C Programming-Searching and Sorting

Understanding the Selection Sort

In [7]: #include <stdio.h>
#include <stdlib.h>

void selection_sort(int array[], int size)

{

int temp, current, j;

for (current = 0; current < size; current++)
for (j = current + 1; j < size; j++)
if (array[current] > array[j])
{
temp = array[current];
array[current] = array[]j];
array[j] = temp;
}
}

int main(void)

{

int values[30], 1i;

for (i = 0; 1 < 30; i++)
values[i] = rand() % 100;

selection_sort(values, 30);
for (i = 0; i < 30; i++)

printf("%d ", values[i]);
}

11 15 21 23 26 26 27 29 30 35 35 36 40 49 59 62 62 63 67 67 68 72 77 82 83 86 8

6 90 92 93

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb

44 1 33 33+ 22 1

33 7 44 7 44 44

55 55 [55 55

22 22 22 | 33

11 11 11 11

11 11 11 11 11
44'7 4-1'7 331 22 1 22
B5 55 55 551 33
33 33 44 44 7 44
22 22 22 | 33 55

Final

8/19

1/31/2021 C Programming-Searching and Sorting

Understanding the Shell Sort

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 9/19

1/31/2021 C Programming-Searching and Sorting

In [8]: #include <stdio.h>
#include <stdlib.h>

void shell sort(int array[], int size)

{

int temp, gap, i, exchange_occurred;
gap = size / 2;

do
{
do
{

exchange_occurred = 0;

for (i = 0; i < size - gap; i++)
if (array[i] > array[i + gap])
{
temp = array[i];
array[i] = array[i + gap];
array[i + gap] = temp;
exchange_occurred = 1;

}

} while (exchange_occurred);

}
while (gap = gap / 2);

}
int main(void)
{

int values[50], 1i;

for (i = 0; i < 50; i++)
values[i] = rand() % 100;

shell sort(values, 50);

for (i = 0; i < 50; i++)
printf("%d ", values[i]);

2 11 11 15 15 19 21 21 22 23 24 26 26 27 29 29 29 30 35 35 36 37 40 42 49 56 58
59 62 62 63 67 67 67 68 69 70 72 73 77 82 83 84 86 86 90 92 93 93 98

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 10/19

1/31/2021 C Programming-Searching and Sorting

Understanding the Quick Sort

ol2l1[3]4 5/8|76
[: 1 ’
01 2|3]|a| [s]|e|[7] /|8
] e aedp
o [1 2[3] [Q][s]e] [z

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 11/19

1/31/2021 C Programming-Searching and Sorting

In [9]: #include <stdio.h>
#include <stdlib.h>

void quick_sort(int array[], int first, int last)

{

int temp, low, high, list_separator;

low = first;
high = last;
list separator = array[(first + last) / 2];

do
{

while (array[low] < list_separator)
low++;

while (array[high] > list_separator)
high--;

if (low <= high)
{
temp = array[low];
array[low++] = array[high];
array[high--] = temp;
}

}
while (low <= high);

if (first < high)
quick_sort(array, first, high);
if (low < last)
quick_sort(array, low, last);

}

void main(void)

{

int values[100], 1i;

for (i = 0; i < 100; i++)
values[i] = rand() % 100;

quick_sort(values, 0, 99);
for (i = 0; i < 100; i++)

printf("%d ", values[i]);

2355811 11 12 13 13 14 15 15 19 21 21 22 23 24 24 25 26 26 26 26 27 27 29
29 29 29 30 32 34 35 35 36 36 37 39 39 40 42 43 45 46 49 50 51 54 56 56 57 58 5
9 60 62 62 62 63 64 67 67 67 67 68 68 69 70 70 72 73 73 76 76 77 78 80 81 82 82
83 84 84 84 86 86 86 87 88 90 91 92 93 93 94 95 96 98 99

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 12/19

1/31/2021 C Programming-Searching and Sorting

Sorting an Array of Character Strings

In [10]: #include <stdio.h>
#include <stdlib.h>
#include <string.h>

void bubble_sort(char *array[], int size)
{
char *temp;
int i, j;

for (i = 0; 1 < size; i++)
for (j = 03 j < size; j++)
if (strcmp(array[i], array[j]) < @)

{
temp = array[i];
array[i] = array[jl;
array[j] = temp;
}
}
int main(void)
{
char *values[] = {"AAA", "cCCC", "BBB", "EEE", "DDD"};
int i;

bubble_sort(values, 5);

for (i = 0; 1 < 5; i++)
printf("%s ", values[i]);

AAA BBB CCC DDD EEE

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 13/19

1/31/2021 C Programming-Searching and Sorting

Using the C Library gsort

Compare Function Returns
<@ The element pointed by a goes before the element pointed by b

@ The element pointed by a is equivalent to the element pointed by b
>0 The element pointed by a goes after the element pointed by b

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 14/19

1/31/2021 C Programming-Searching and Sorting

In [11]: #include <stdio.h>
#include <stdlib.h>
#include <string.h>

int int_compare (const void *a, const void *b)

{
return (*(int *)a - *(int *)b);
}
int float_compare (const void *a, const void *b)
{
if (*(float *) a < *(float *) b)
return(-1);
else if (*(float *) a > *(float *) b)
return(l);
else
return(0);
}
int string compare (const void *a, const void *b)
{
const char* stringl = *(const char**)a;
const char* string2 = *(const char**)b;
return strcmp(stringl, string2);
}

#define ARRAY_SIZE 5

int main (void)

{
int values[] = { 99, 33, 80, 12, 5 };
float float_values[] = { 1.2, 3.1, 2.2, 5.5, 4.4 };
char *strings[] = { "AAA", "DDD", "BBB", "EEE", "CCC" };
gsort(values, ARRAY SIZE, sizeof(int), int_compare);
gsort(float values, ARRAY SIZE, sizeof(float), float_compare);
gsort(strings, ARRAY_SIZE, sizeof(char *), string_compare);
for(int i = 0; i < 5; i++)
printf("%d ", values[i]);
printf("\n");
for(int i = 9; i < 5; i++)
printf("%5.2f ", float values[i]);
printf("\n");
for(int i = 0; i < 5; i++)
printf("%s ", strings[i]);
}

512 33 80 99
1.20 2.20 3.10 4.40 5.50
AAA BBB CCC DDD EEE

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb

15/19

1/31/2021 C Programming-Searching and Sorting

Reversing the Sort Order

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 16/19

1/31/2021 C Programming-Searching and Sorting

In [12]: #include <stdio.h>
#include <stdlib.h>
#include <string.h>

int int_compare (const void *a, const void *b)

{
return (*(int *)b - *(int *)a);
}
int float_compare (const void *a, const void *b)
{
if (*(float *) b < *(float *) a)
return(-1);
else if (*(float *) b > *(float *) a)
return(l);
else
return(0);
}
int string compare (const void *a, const void *b)
{
const char* stringl = *(const char**)a;
const char* string2 = *(const char**)b;
return strcmp(string2, stringl);
}

#define ARRAY_SIZE 5

int main (void)

{
int values[] = { 99, 33, 80, 12, 5 };
float float_values[] = { 1.2, 3.1, 2.2, 5.5, 4.4 };
char *strings[] = { "AAA", "DDD", "BBB", "EEE", "CCC" };
gsort(values, ARRAY SIZE, sizeof(int), int_compare);
gsort(float values, ARRAY SIZE, sizeof(float), float_compare);
gsort(strings, ARRAY_SIZE, sizeof(char *), string_compare);
for(int i = 0; i < 5; i++)
printf("%d ", values[i]);
printf("\n");
for(int i = 9; i < 5; i++)
printf("%5.2f ", float values[i]);
printf("\n");
for(int i = 0; i < 5; i++)
printf("%s ", strings[i]);
}

99 80 33 12 5
5.50 4.40 3.10 2.20 1.20
EEE DDD CCC BBB AAA

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 17/19

1/31/2021 C Programming-Searching and Sorting

What You will Learn Next

Arrays let your programs store multiple values of the same type. A problem with using arrays is that
your programs must know in advance the number of elements the array must store. In the next
lesson, you will learn how to allocate memory dynamically as the program executes and how to use
that memory to create linked lists and binary trees.

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 18/19

1/31/2021 C Programming-Searching and Sorting

localhost:8888/notebooks/C Programming-Searching and Sorting.ipynb 19/19

